Computer Evolution over the Next Decade: Fact or Fiction?

Prof. Frank Wang
Head of School
School of Computing
University of Kent
United Kingdom

Chairman
UK & Ireland Chapter
IEEE Computer Society
Computing Laboratory, Kent
An Evolutionary History of Computer Science

1822 Charles Babbage
1937 Iowa State University
1939 Alan Turing
1943 ENIAC
1953 COBOL
1958 Integrated circuit
1964 Mouse/GUI
1971 Floppy disk
1971 Memristor by Leon Chua
1973 Ethernet
1974 IBM PC
1976 Apple
1985 MS Windows
1990 WWW by Tim Berners-Lee
1999 Wi-Fi
2004 Firefox
2008 HP Memristor
2010 iPad
2012 Memristors: Brain-like computer
2014 SpiNNaker (BCS Lovelace Medal)
2025 Future Computers???
Computers evolve fast and the processing power/integration density should double every two years by Moore's Law. In 2005, Moore said that as transistors reach the atomic scale we may encounter fundamental barrier we can't cross.
1. Brain-like Computer
2. Green Computing
3. Cloud Computing/Big Data
Memristors

- In 1971 Prof Chua defined the memristor conceptually and mathematically.
In May 2008, Dr Stan Williams and his team from HP Labs published a paper in Nature “The Memristor: Missing Circuit Element Found”
What is a Memristor

Resistor: \(dv = Rdi \)

Capacitor: \(dq = Cd \)

Inductor: \(d\phi = Ldi \)

Memristor: \(d\phi = Mdq \)
Delayed Switching in Memristors and Memristive Systems

Frank Zhigang Wang, Senior Member, IEEE, Na Helian, Sining Wu, Mian-Guan Lim, Yike Guo, and Michael Andrew Parker

Abstract—It was found that the switching in a memristor takes place with a time delay (this peculiar feature is named “the delayed switching”). This feature has been verified by a circuit-based experiment. The physical interpretation of this phenomenon is that an electron element possesses certain inertia, i.e., charge q or flux ϕ is inertial with the tendency to remain unchanged (settle to some equilibrium state). It cannot respond as rapidly as the fast variation in the excitation waveform and always takes a finite but small time interval to change its resistance value, as it must take place in a memristor or memristive system. In addition, a potential application of using this feature in ultradense computer memory has been discussed.

Index Terms—Electronic device, memristive system, memristor, random access memory, resistively switching.
Delayed switching applied to memristor neural networks

Frank Z. Wang,¹,a) Na Helian,² Yike Guo,³ Sining Wu,¹ Xiao Yang,¹ Guan Lim,¹ and Md Mamunur Rashid⁴

¹Future Computing Group, School of Computing, University of Kent, United Kingdom
²School of Computer Science, University of Hertfordshire, United Kingdom
³Department of Computing, Imperial College, United Kingdom
⁴CERN, Geneva, Switzerland

FIG. 1. (Color online) Memristor’s delayed switching effect (Refs. 3 and 4): the switching from one resistance state to another due to an input voltage pulse takes place with a time delay. The effect also applies to a sequence of spikes, well used in neural networks.
Half selection

Full selection

Half selection

Half selection

Buried Oxide

Silicon

©Frank Wang, Cyber Science, London, 8th June 2015
Brain-like computers

• A neuron connects 20,000 synapses.
• Four orders of magnitude
• 2-terminal element
• A nanometer Cambridge junction
Charge Confinement and Doping at LaAlO₃/SrTiO₃ Interfaces

T. Fix, F. Schoofs, J.L. MacManus-Driscoll, and M.G. Blamire

Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
(Received 29 June 2009; published 16 October 2009)

The thickness and origin of the free charge layer which forms at the LaAlO₃/SrTiO₃ interface is still uncertain. By inserting Mn dopants at different distances from the interface we can locate the position of carriers within the SrTiO₃ surface layers. We show that the major fraction of carriers are confined within 1 unit cell of the interface. This confirms proposed for this system but the low mobility of these carrier materials for applications and a more complete understanding mobility carriers identified.

DOI: 10.1103/PhysRevLett.103.166802

FIG. 1 (color online). Schematic diagrams of the samples grown for these experiments. (i) Reference LaAlO₃/SrTiO₃ (substrate); (ii) L layers of homoeptaxial SrTiO₃ grown between the substrate and the LaAlO₃ cap; (iii) M layers of Mn-doped SrTiO₃ grown between the substrate and the LaAlO₃ cap; (iv) N(= L + M) layers grown on the SrTiO₃ substrate so that the LAO/STO interface is formed between LaAlO₃ and undoped homoepitaxial SrTiO₃.
Brains Are Made of Memristors

Maheshwar Pd. Sah, Hyongsuk Kim, and Leon O. Chua
Hodgkin & Huxley described the model in 1952 to explain the mechanisms underlying the initiation and propagation of action potentials in the squid giant axon. They received the 1963 Nobel Prize in Physiology or Medicine for this work.
Chua’s memristive HH axon circuit model is made of a capacitor, a resistor, three batteries and two memristors. The two memristors were approximated as two time-varying resistors by Hodgkin & Huxley. This approximation had led to numerous anomalies and paradoxes for 70 years.
The parameter space. The two disjoint Chua’s Edge of Chaos domains (in magenta) are located at the lower and upper tips of the red locally active Islands.
A transient waveform converges to a spike train with the initial condition indicated.
SpiNNaker (Spiking Neural Network Architecture)

Steve Furber
The University of Manchester
steve.furber@manchester.ac.uk
SpiNNaker chip

Mobile DDR SDRAM interface

Multi-chip packaging by UNISEM Europe
48-node PCB
SpiNNaker project

- A million mobile phone processors (ARM) in one computer
- Able to model about 1% of the human brain...
- ...or 10 mice!
— neurons communicate via ‘spike’
— Packet: which neuron fires, and, when it fires
— Timestamp
Conclusions

• SpiNNaker has over 1 million cores, 1k simulated neurons per core.
• Capable of simulating very complex networks of 1 billion neurons.
• Interrupt-driven without any operating system running on the cores and central synchronising clock.
• An interrupt arrives (usually in the form of a spike packet); the core wakes up to handle it, possibly emitting more packets of its own as a consequence; and then returns to sleep.
• When a neuron is firing a spike, the time of the spike and the identity of the neuron that emitted the spike need to be conveyed, which is implemented by using packet switched communication and multicast routing.
Resistor, R

Capacitor, C

Mem-Inductor, $L(q)$

Sea water

Thermometer

Video camera

Amoeba

V_{in} in analogue to temperature

$i(t)$

V_{out} in analogue to amoeba’s speed

V_{out} in analogue to temperature

©Frank Wang, Cyber Science, London, 8th June 2015
Stimulus frequency $f_{sti} \text{ (Hz)}$

Resonant frequency $f_{res} \text{ (Hz)}$

Stimuli $V_{in}(t)$

Response $V_{out}(t)$
2013 Special Issue

Adaptive Neuromorphic Architecture (ANA)

Frank Zhigang Wang a,*, Leon O. Chua a,b, Xiao Yang a, Na Helian c, Ronald Tetzlaff d, Torsten Schmidt d, Caroline Li a, Jose Manuel Garcia Carrasco e, Wanlong Chen a, Dominique Chu a

a School of Computing, University of Kent, UK
b Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
Pavlov's Dog
Hebbian rule

“neurons that fire together, wire together”
In Spinnaker ...

“Sight” Neuron

“Food”

“Salivation” Neuron

“Salivation”
(a) A “Full Voltage” causes a delayed switching;

(b) A “Half Voltage” causes no switching;

(c) A long “Half Voltage” still causes an unwanted switching.
Delayed switching applied to memristor neural networks

Frank Z. Wang,¹,a) Na Helian,² Yike Guo,³ Sining Wu,¹ Xiao Yang,¹ Guan Lim,¹ and Md Mamunur Rashid⁴

¹Future Computing Group, School of Computing, University of Kent, United Kingdom
²School of Computer Science, University of Hertfordshire, United Kingdom
³Department of Computing, Imperial College, United Kingdom
⁴CERN, Geneva, Switzerland

(Presented 3 November 2011; received 28 September 2011; accepted 26 October 2011; published online xx xx xxxx)

Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the “delayed switching effect.” In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons.
1. Memristor-based Brain-like Computer
2. Green Computing
3. Cloud Computing/Big Data
Why Green?

• 40-50% of corporate energy consumption goes to IT
• Computing-centre power costs have doubled in five years
• Energy costs will exceed hardware costs
• Regulations are being introduced in EU & US
Centre for Grid Computing

The advent of the computational grid brings implications. Sooner or later, everybody will realize that we were by the Internet. Grid Computing is already in production. In 2001, Forbes predicted the grid would be a factor in business by the year 2020. The Centre for Grid Computing (CGC) is dedicated to Research in Mining and Data-Intensive Computing on the Grid platform. For more details see the Centre for Grid Computing Home Page.
Sunfire Galaxy-class supercomputer at Cambridge-Cranfield HPCF listed as the 343rd in Top500 Super Computers in the world.

400,000 GBP/yr to cover water & electricity bills
1. Memristor-based Brain-like Computer
2. Green Computing
3. Cloud Computing/Big Data
CloudJet4BigData: Streamlining Big Data via an accelerated socket interface

Frank Zhigang Wang
School of Computing
University of Kent
UK

Theo Dimitrakos
British Telecommu-
nication
UK

Na Helian
SCS
University of
Hertfordshire
UK

Sining Wu
Xyratex
Havant
UK

Ling Li
SoC
University of Kent
UK

Rodric Yates
Hursley Lab.
IBM
UK

Grid-Oriented Storage: A Single-Image, Cross-Domain, High-Bandwidth Architecture

Frank Zhigang Wang, Senior Member, IEEE, Sining Wu, Na Helian, Michael Andrew Parker, Yike Guo, Yuhui Deng, and Vineet R. Khare

ACM Operating Systems Review

A Heterogeneous Storage Grid Enabled by Grid Service

Yuhui Deng, Frank Wang
Center for Grid Computing, Cambridge-Cranfield High Performance Computing Facilities, Cranfield University Campus, Bedfordshire MK43 0AL, United Kingdom

©Frank Wang, Cyber Science, London, 8th
June 2015
Comments from independent reviewers:

• This proposed work has all the potentials of keeping the UK research and development – world class.
• It is certainly first of its kind.
Finalist Award

Finalist Project: Grid-oriented Storage: Parallel Streaming Data Access to Accelerate Distributed Bioinformatics Data Mining

Finalist team: Frank Z. Wang (Centre for Grid Computing, Cambridge-Cranfield HPCF), Sining Wu, Yuhui Deng, Vineet R. Khare & Chenhan Liao (Centre for Grid Computing, Cambridge-Cranfield HPCF), Amir Nathoo; Rodric Yates; Paul Fairbairn (IBM Hursley Laboratory), Jon Crowcroft, Jean Bacon, Michael Andrew Parker (Cambridge University), Zhiwei Xu (Institute of Computer Technology), Yike Guo (Imperial College)
Grants...

- EC FP7 Grant (300k euros) “Re-discover Basic Circuit Element Table”
- EPSRC/DTI grant (1 million GBP) “Grid-oriented Storage: Next Generation Architecture”
- EPSRC grant (470k GBP) "Accelerating NFS/CIFS over the WAN/Grid“
- EC FP7 Grant (1.01 million euros) “QuickLinux”
- EC FP6 Grant (400k euros) “EuroAsiaGrid”
- ……
An Evolutionary History of Computer Science

1822 Charles Babbage
1937 Iowa State University
1939 Alan Turing
1943 ENIAC
1953 COBOL
1958 Integrated circuit
1964 Mouse/GUI
1971 Floppy disk
1971 Memristor by Leon Chua
1973 Ethernet
1974 IBM PC
1976 Apple
1985 MS Windows
1990 WWW by Tim Berners-Lee
1999 Wi-Fi
2004 Firefox
2008 HP Memristor
2010 iPad
2012 Memristors: Brain-like computer
2014 SpiNNaker (BCS Lovelace Medal)
2025 Future Computers???
Computing towards 2025

Concepts and technologies developed within computer science are starting to have wide-ranging applications outside the subject (as mathematics in physics).
Computing towards 2025

• Service
• Intelligence
• Connectivity
• Mobility
• Interactivity
Computing towards 2025

• If Moore’s law continues to hold true, computers would be 32 times more powerful than the current models.

• Green computing will prove itself to be the most concerning issue as computing becomes increasingly pervasive.

• Computer science will be at the heart of future revolutions in business, science, and society.
[2] Bin Ye and Frank Wang, Mirroring Mobile Phone on the Clouds, IEEE Mobile Services, USA, June 2014 (accepted)
Disclaimer

- © University of Kent, All rights reserved. This presentation is delivered in confidence to the targeted audiences only. No parts of this presentation may be reproduced without the written permission of the copyright holder. School of Computing accepts no liability for the content of this presentation or the consequences of any actions taken on the basis of the information provided.