Moving Assets to the Cloud: A Game Theoretic Approach Based on Trust

Louai Maghrabi & Eckhard Pfluegel

Wireless Multimedia and Networking Research Group Faculty of Science, Engineering & Computing School of Computing & Information Systems Kingston University

Kingston University London Cybersecurity 2015 $8^{th} - 9^{th}$ June

Overview

Motivation

Research Contributions

The Game Theoretic Model

Theorem

Examples

Conclusion & Future Research Directions

Motivation

- Idea of cloud computing: IT services will be provided as nowadays water & electricity
- Organisations invest huge resources to protect IT infrastructures rather than assessing risks
- Risk Assessment frameworks such as OCTAVE, TARA, FAIR, STRIDE & NIST RMF are difficult to apply to a cloud-based environment.
- Threat and vulnerability analysis is often based on identification of critical assets. (Asset information might not be available)
- ► The analysis effectively needs the cooperation of the cloud provider. But we cannot assume that this cooperation can be established.

Research Contributions

- We design a game theoretic cloud-based model for assessing risks to critical assets.
- Establish first model depending on trust degree T a user has in the cloud provider
- ▶ This solves the issue with a vulnerability v (exploiting asset a on the user's system) shifting to the cloud (resulting in a shifted vulnerability \bar{v})
- Focus on user-centric model

The Game Theoretic Model

- ▶ Game $G = \{U, A, S^u, S^a\}$
- Players:
 - User U
 - Attacker A
- Strategies
 - \triangleright S^u : User's Strategy
 - $-s_c^u$: Put user's asset on cloud
 - $-s_h^u$: Keep user's asset on user's system
 - ► S^a: Attacker's Strategy
 - $-s_u^a$: Attack asset on user's system
 - $-s_c^a$: Attack asset on cloud

Assumptions on the Cloud

- Note: The cloud provider is excluded from the game as a player.
- External attacks are usually unsuccessful, but in the event they are successful, compensation will be given
- The frequency of internal attacks depends on a parameter T
- We interpret this as the trust degree in the cloud provider:
 - ightharpoonup T = 1: fully trusted cloud provider
 - ightharpoonup 0 < T < 1: partially trusted
 - T = 0: complete lack of trust

Cost Functions

- $C^u_{damage(v)}$ & $C^u_{damage(\bar{v})}$: user's damage from an attack on the asset through a vulnerability
- $ightharpoonup C_{fee}^u$: cloud services subscription fees
- $ightharpoonup C_{defend(v)}^u$: cost of user's defense
- $ightharpoonup C^a_{attack(v)} \& C^a_{attack(\bar{v})}$: cost of accessing the asset through a vulnerability
- $ightharpoonup C_{attack(\bar{v})}^a = (1-T)^{-1} \cdot C_{attack(v)}^a$
- $C_{damage(\bar{v})}^{u} = (1 T) \cdot C_{damage^*}^{u}$

Benefit Functions

- \triangleright $B_{attack(v)}^a$: attacker's benefit from attacking user's a though v
- $ightharpoonup B^a_{attack(\bar{v})}$: attacker's benefit from attacking user's a though \bar{v}
- $B^{a}_{attack(\bar{v})} = (1 T) \cdot B^{a}_{attack(v)}$

Utility Matrix

	s _{user}	s ^a cloud
	$-C^u_{ extit{fee}}-C^u_{ extit{damage}(ar{v})}$,	$-C_{fee}^u-C_{damage(\bar{v})}^u$,
s ^u cloud		
	$-C_{attack(v)}^{a}$	$B^a_{attack(ar{v})} - C^a_{attack(ar{v})}$
	$-C_{defend(v)}^{u}-C_{damage(v)}^{u}$	0,
s ^u in-house		
	$B^a_{attack(v)} - C^a_{attack(v)}$	$-C^a_{attack(\bar{v})}$,

Substitution

- $C_{attack(\bar{v})}^{a} = (1 T)^{-1} \cdot C_{attack(v)}^{a}$
- $C_{damage(\bar{v})}^u = (1 T) \cdot C_{damage^*}^u$
- $B_{attack(\bar{v})}^{a} = (1 T) \cdot B_{attack(v)}^{a}$

	s _{user}	s ^a cloud
	$-C^u_{ extit{fee}} - (1 - T) \cdot C^u_{ extit{damage*}}$,	$-C_{ extit{fee}}^u - (1-T) \cdot C_{ extit{damage}^*}^u$,
s _{cloud}		
	$-C_{attack(v)}^{a}$	$(1-T)\cdot B_{attack(v)}^a - (1-T)^{-1}\cdot C_{attack(v)}^a$
	$-C_{defend(v)}^{u}-C_{damage(v)}^{u}$	0,
s _{in} —house	$B^a_{attack(v)} - C^a_{attack(v)}$	$-(1-T)^{-1}\cdot C^a_{attack(v)},$

Theorem

▶ If T = 1 and the following condition is satisfied:

$$C_{defend(v)}^{u} + C_{damage(v)}^{u} > C_{fee}^{u}$$
 (1)

then the strategy $S = (s_c^u, s_u^a)$ is a pure Nash equilibrium for G.

▶ If T = 0 and the following condition is satisfied:

$$C_{damage^*}^u > C_{defend(v)}^u + C_{damage(v)}^u - C_{fee}^u$$
 (2)

then the strategy $S = (s_h^u, s_u^a)$ is a pure Nash equilibrium for G.

Illustration for T=1

T=1	S _{user}	s ^a cloud
	$-C_{fee}^{u}$,	$-C_{fee}^{u}$,
s ^u cloud		
	$-C_{attack(v)}^{a}$	$-\infty$
	$-C_{defend(v)}^{u}-C_{damage(v)}^{u}$	0,
s ^u in—house		
	$B^{a}_{attack(v)} - C^{a}_{attack(v)}$	$-\infty$,

If we assume condition (1), then we have a pure Nash equilibrium

Example

We assume some numerical values for the different cost and benefit functions to obtain the following table:

T = 0.5	S _{user}	S ^a cloud
S ^u cloud	-35, -60	-35, -10
s _{in-house}	-50, 50	0, -100

We then use GAMBIT to calculate the mixed Nash equilibrium and probabilities

- $P(s_h^u) = 0.25$
- $P(s_c^u) = 0.75$
- $P(s_{ij}^a) = 0.7$
- $P(s_c^a) = 0.3$

Conclusion & Future Research Directions

- Devised the first user-centric model using trust degree as a parameter (To our knowledge!)
- Our model will be extended to
 - cover several or all assets in order to have a more comprehensive picture of the overall risks
 - be more realistic by adding more action and players

Thank you!