

The AFIT of Today is the Air Force of Tomorrow.

A Systems Security Approach for Requirements Analysis of Complex Cyber-Physical Systems

Martin "Trae" Span

Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the U.S. Government.

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Case Number: 88ABW-2018-1538

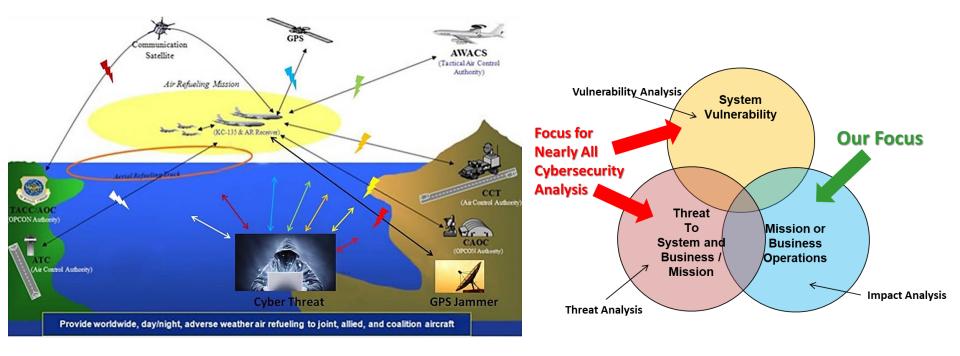
Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win

Motivation

The AFIT of Today is the Air Force of Tomorrow.

- Cyber-Physical Complex Systems are vulnerable
 - Current cybersecurity approaches are limited in effectiveness and usability
- Legacy weapons systems are not designed for cyber threats or cyber resiliency
- DoD and Congressional Mandates: NDAA Sec 1647
 Requirement and funding to access major weapon systems
- U. S. Air Force Cyber Resiliency Office for Weapons Systems (CROWS)
 - Air Force Cyber Campaign Plan
 - "Bake in" for new acquisitions,
 - Mitigate critical vulnerabilities in fielded systems
 - LOA 3: Recruit, Hire, and TRAIN workforce

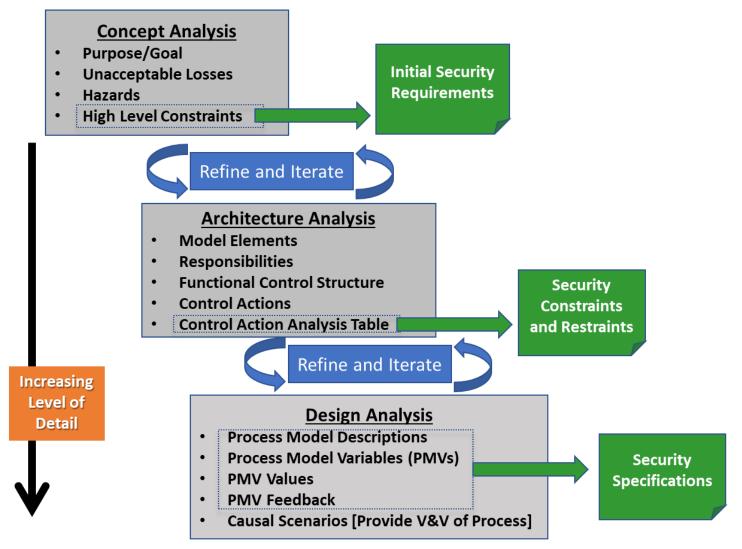
Air University: The Intellectual and Leadership Center of the Air Force Aim High ... Fly-Fight-Win Right Image from CRO2S 5/17 overview



Research Objectives

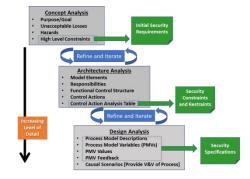
The AFIT of Today is the Air Force of Tomorrow.

- How can STPA-Sec be tailored to enable the development of security requirements and design criteria?
- How executable is STPA-Sec for USAF warfighting Systems?
- What recommendations can be made to increase the utility and ease the use of STPA-Sec?


Air University: The Intellectual and Leadership Center of the Air Force Aim High ... Fly-Fight-Win Right Image from Col Young CNW 2017

STPA-Sec Tailored Approach

The AFIT of Today is the Air Force of Tomorrow.


The AFIT of Today is the Air Force of Tomorrow.

NIST Special Publication 800-160

Systems Security Engineering

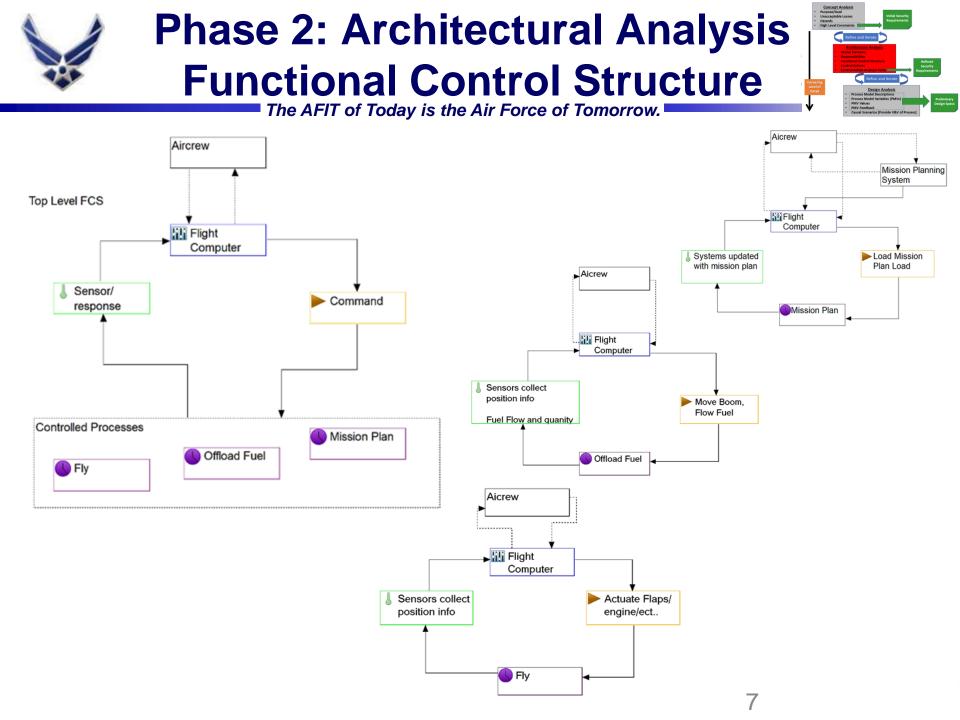
This publication contains syster considerations for ISO/IEC/IEE and software engineering — Sy It provides security-related impl the standard and should be use as a complement to the standard

Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems

			STPA-Sec Phases				
tems security engineering EEE 15288:2015, Systems System life cycle processes, nplementation guidance for			Concept Analysis	Architectural Analysis	Design Analysis		
sed in conjunction with and dard.	This publi	Purpose	Determine Initial Security Requirements	Determine "Design-To" Constraints and Restraints	Determine "Build-To" Criteria		
	<u> </u>	NIST 800-160 SSE Processes	 BA - Business Analysis SN - Stakeholder Needs SA - Systems Analysis 	 SR - System Requirements Definition AR - Architectural Definition SA - Systems Analysis 	 DE - Design Definition SA - Systems Analysis 		

Phase 1: Conceptual Analysis

The AFIT of Today is the Air Force of Tomorrow.


Purpose	A System to	Provide worldwide aerial refueling
Method	By Means of	Flying, Refueling, and Mission Planning
Goal	In order to	Enable the Air Force Mission to meet Joint Capability Areas via refueling and airlift: Force Enable, Force Extend, Force Multiply

_	zard to Loss ss Walk Table	L1 Death or Human injury	L2 Damage to or loss of aircraft	L3 Unable to Complete Mission	Initial Security Constraints A/C must maintain minimum safe	Hazard Mapped to		
H1	Flying to Close to other aircraft/out of position	х	х	х	Separation distance Must have minimum mission critical safety systems functional to attempt AR A/C must maintain minimum safe	H1 H1		Initial Securit
H2	Violation of Altitude/clear ance from terrain	х	х	Х	 3 altitude limits Must have minimum mission critical safety systems functional for terrain 4 flight 	H2 H2		Requirements
Н3	Unable to evade enemy threats	Х	Х	Х	Must maintain integrity of mission critical warning and deterrence 5 systems	H3		
H4	Msn critical systems not functional when required			Х	Msn critical systems must be available when required to perform 6 primary msn	H4]	

ty ts

6

Architectural Analysis Control Actions

The AFIT of Today is the Air Force of Tomorrow.

KC-X CONTROL ACTIONS						
Control Action	Activity	Performer	Description			
1. Position Mx	Fly	Aircrew/ Computer	Adjust position- heading change, takeoff, land, climb, descend. Computer included for autopilot functions			
2. Velocity Mx	Fly	Aircrew/ Computer	Change Velocity- accelerate, decelerate, climb, descend. Computer included for autopilot functions			
3. Communicate	Fly	Aircrew/ Computer	Radio and digital(i.e. ACARS, IFF) to other A/C, ATC and ground assets. Access and communicate in net centric environment.			
4. Precontact	Offload Fuel	Aircrew/ Computer	Instructing both crews on proper position to begin AR. Solution independent to allow for human direction or computer aided position information			
5. Contact	Offload Fuel	Aircrew/ Computer	Receiver connected to begin refueling. Solution Independent of human vs. computer to allow automation as desired			
6. Breakaway	Offload Fuel	Aircrew/ Computer	Command to disengage either when complete or in case of emergency. Solution Independent of human vs. computer to allow automation as desired			
7. Prepare OPS	Mission Plan	Aircrew/ external mission planning system	Reviews mission tasking, intel, and weather. Interacts with external mission planning system to create mission plan file			
8. Distribute OPS	Mission Plan	Aircrew/ Computer	Aircrew inserts cartridge into jet, also provides crew briefings and coordination for mission plan. Computer distributes mission plan files to A/C systems			

Architectural Analysis Control Action Analysis Table

	KC-X CONTROL ACTION ANALYSIS TABLE.								
CA#	Control Action	Not providing causes Hazard	Providing Causes Hazard	Too Early/too late, wrong order	Stopping too soon/applying too long				
1	Position Mx (Aircrew)	Not Providing Position MX is Hazardous if in a critical phase of flight [H1, H2, H3]		Position MX is Hazardous if done too early or too late in a critical phase of flight [H1, H2, H3]	Position MX is Hazardous if stopped to soon or applied to long in a critical phase of flight [H1, H2, H3]				
2	Velocity Mx	Not Providing Velocity MX is Hazardous if in a critical phase of flight [H1, H2, H3]		Velocity MX is Hazardous if done too early or too late in a critical phase of flight [H1, H2, H3]	Velocity MX is Hazardous if stopped to soon or applied to long in a critical phase of flight [H1, H2, H3]				
3	Communicate	Not Providing Communication is Hazardous if in a critical phase of flight(takeoff, landing, joining refueler) [H1, H3]		Communication too late is Hazardous if in a critical phase of flight(takeoff, landing, joining refueler) [H1, H3]	Communication stopped too soon (clipped transmission) is Hazardous if in a critical phase of flight [H1, H3]				
4	Precontact	Not Providing Precontact is Hazardous as a A/C could be out of position and damage equipment [H1,H4]		The wrong sequence for Precontact is Hazardous if in a critical phase of refueling setup [H1,H4]					
5	Contact		Providing Contact is hazardous if attempted during an unsafe position [H1]	Providing Contact out of sequence is hazardous if attempted during an unsafe position [H1]					
6	Breakaway	Not providing Breakaway is hazardous if unsafe position occurs [H1]		Not providing Breakaway on time is hazardous if unsafe position occurs [H1]					
7	Prepare OPS	Not providing Prepare OPS is hazardous in almost all scenarios (no planned route, no deconflicts, no mission plan loaded on systems) [H1,H2,H3,H4]							
8	Distribute OPS	Not providing Distribute OPS is hazardous in almost all scenarios (no filed flight plan, no crew briefing, no mission plan loaded on systems) [H1,H2,H3,H4]	Providing Distribute OPS is hazardous when malware or intentionally incorrect information is distributed to systems [H1,H2,H3,H4]						

Architectural Analysis Output Security Constraints The AFIT of Today is the Air Force of Tomorrow.

Security **Constraints and Restraints**

Security Constraints and Restraints – Output of Architectural Analysis

Hazardous Control Actions	Required System Constraint	
Not Providing POSITION MX Commands	POSITION MX commands must be provided	
is Hazardous if in a critical phase of flight	during critical phases of flight	
[H1, H2, H3]		
POSITION MX commands are Hazardous	POSITION MX Commands must be executed	
if done too early or too late in a critical	within a specified time of the maneuver	
phase of flight [H1, H2, H3]	requirement	
Providing CONTACT is hazardous if	CONTACT Command must only be provided if	
attempted during an unsafe position	both aircraft are in a safe position ready for AR	
[H1]		
Providing CONTACT out of sequence is	CONTACT Command must not be issued or	
hazardous if attempted during an unsafe	received after the BREAKAWAY Command has	
position [H1]	been issued until the aircraft have resumed a	
	safe position	

Air University: The Intellectual and Leadership Center of the Air Force Aim High ... Fly-Fight-Win

10

Phase 3: Design Analysis

The AFIT of Today is the Air Force of Tomorrow.

	PROCESS MODEL DESCRIPTIONS					
Control Action	Key Activity	Process Model Description / Decision Logic				
1. Position Mx	Fly	Execute Position Mx during critical phases of flight	_			
2. Velocity Mx	Fly	Execute Velocity Mx during critical phases of flight				
6. Breakaway	Refuel	Issue Breakaway when unsafe position	Se	curity		

FULL PROCESS MODEL DESCRIPTION								
СА	Process Model Description	Process Model Variable Values	Feedback Information					
Breakaway	Issue Breakaway when unsafe position	Separation Distance	In bounds, out of bounds, unknown	Altimeter warning, proximity warning, eyeball				

Security Specifications

- Causal Scenario Breakaway
 - Turbulence, out of position, poor refueler maneuvering, engine malfunction, ect.
 - In Bounds, Out of Bound, or Unknown

The AFIT of Today is the Air Force of Tomorrow.

- Conceptual Analysis STPA-Sec is executable on USAF warfighting systems
- This work provides widely distributable STPA-Sec reference and detailed example of a USAF aircraft case study
 - Presents a tailorable approach for execution
 - Provides a detailed example and recommendations to help the practitioner (a non-PhD) perform STPA-Sec
- Subjective utility assessment is below:

	Concept Analysis	Architectural Analysis	Design Analysis
Purpose	Determine Security Requirements	Determine Design-To Criteria	Determine Build-To Criteria
Difficulty	Easy	Moderate	Moderate-High
Level of Domain Expertise Req'd	Novice	Advanced	Expert
Level of STPA Expertise Req'd	Low	High	Moderate
Amount of STPA instructional materials available	Numerous	Some	Few
Duration	Hours	Days	Weeks
Number of Steps	4 Steps	5 Steps	5 Steps