Quantisation feasibility and performance of RSS-based secret key extraction in VANETs

Mirko Bottarelli¹ Gregory Epiphaniou¹ Dhouha Kbaier
Ben Ismsail¹ Petros Karadimas²

¹Wolverhampton Cyber Research Institute, University of Wolverhampton, UK
²School of Engineering, University of Glasgow, Scotland

June 2018

Cyber SA 2018
Outline

Vehicle Ad-hoc NETworks

Physical Layer Security (PLS)

Aims and objectives

Evaluation metrics

The theoretical model

Simulations

Conclusions
Vehicle Ad-hoc NETworks

- Decentralised **networks of vehicles’ on-board-units** (OBUs) and **road-side units** (RSUs)
- Provide **Safety-related** services, **Navigation-related** information and **Infotainment**
- System security challenged by the network properties and service constraints
VANETs Security

- **Symmetric** techniques are not applicable
- Proposed **Public Key Cryptography** has drawbacks

<table>
<thead>
<tr>
<th>Symmetric (bits)</th>
<th>RSA and Diffie-Hellman (bits)</th>
<th>Elliptic Curve (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1024</td>
<td>160</td>
</tr>
<tr>
<td>112</td>
<td>2048</td>
<td>224</td>
</tr>
<tr>
<td>128</td>
<td>3072</td>
<td>256</td>
</tr>
<tr>
<td>192</td>
<td>7680</td>
<td>384</td>
</tr>
<tr>
<td>256</td>
<td>15360</td>
<td>512</td>
</tr>
</tbody>
</table>

NIST Recommended Key Sizes

- Physical layer imperfections can be harnessed to **unconditionally** secure wireless communications
Physical Layer Security

Multipath propagation phenomena

- **Shared** → multipath effects almost identical for both communicating parties (*Channel reciprocity*)
- **Secret** → correlation rapidly vanishes with time and distance (*Channel variability*)
The Extraction Process

- Advantage distillation
- Information reconciliation
- Privacy amplification

Quantisation of channel characteristics
Correction of disagreements due to imperfect reciprocity
Enhancing key robustness
Aims and objectives

Aims

▶ Evaluation of RSS-based **Level Crossing** quantisation in VANETs

\[
Q(x) = \begin{cases}
1, & \text{if } x > q_+ \\
0, & \text{if } x < q_- \\
\text{dropped}, & \text{otherwise}
\end{cases}
\]

Objectives

▶ Optimization of system parameters
▶ Reliability of the protocol against VANETs requirements
▶ Search of possible improvement directions
Evaluation metrics

- **Key entropy**

\[
H = \sum_{i=0}^{N} -p_{0,i} \log p_{0,i} - (1 - p_{0,i}) \log (1 - p_{0,i})
\]

where \(p_{0,i} \) is the probability of bit \(i \) being 0.

- **Bit Mismatch Rate** → the ratio of mismatch bits between legitimate parties to the total number of quantised bits

- **Bit Generation Rate** → the number of secret bits generated per unit time or per sample
The theoretical model

- Channel modeled as narrow-band frequency-invariant V-V channel with three-dimensional scattering

\[G_N(t) = \sum_{l=1}^{L} |\alpha_l| \exp(j\phi_l) \exp(j2\pi v_l t) \]

- \(L = 20 \) multipath components with constant magnitude \(|\alpha_l| \) and random phase \(\phi_l \sim U[-\pi, \pi] \)

- the Doppler effect \(v_l \) adds up the contributions of transmitter, receiver and scatterers in a three-dimensional environment
The simulation 1/2

Fixed invalid region size of \(q_+ - q_- = 0.4 \)

- Original LC algorithm achieves \(BGR \sim 0.2 \) bits/sample, whilst the improved scheme records \(\sim 0.76 \) bits/sample
- Higher results (\(> 0.8 \)) achieved, sacrificing key robustness
Thresholds computed as \(q_{\pm} = mean(\hat{h}) \pm \alpha \cdot stdev(\hat{h}) \)

Parameter \(\alpha \) determines the invalid region size.

- Optimal value \(\alpha = 0.3 \) achieves \(BGR \approx 0.85 \) bits / sample
Conclusions and future work

- Original LC algorithm generates a shared secret key in not less than two seconds, whilst improved version takes half a second.
- Performances are inadequate if the constraints of safety-related applications (10Hz frequency and < 100ms latency) are considered.
- Possible improvements:
 - probing rate adaptation
 - design of a smarter thresholds strategy to exploit the dynamic characteristics of the channel.
Thank you